Q8: A coil having n turns and resistance R  $\Omega$  is connected with a galvanometer of resistance 4R $\Omega$ . This combination is moved in time t seconds from a magnetic field  $W_1$  weber to  $W_2$  weber. The induced current in the circuit is

- (a)  $-(W_2 W_1)/5Rnt$
- (b)  $-n(W_2 W_1)/5Rt$
- (c) - $(W_2 W_1)/Rnt$
- (d)  $-(W_2 W_1)/5Rnt$

## Solution

```
The emf induced in the coil is e = -n(d\Phi/dt)
```

Induced current, 
$$I = e/R' = -(n/R')(d\Phi/dt) --(1)$$

Given, 
$$R' = R + 4R = 5R$$

$$d\Phi = W_2 - W_1$$

(here,  $W_1$  and  $W_2$  are flux associated with one turn)

Substituting the given values in equa(1) we get

$$I = (-n/5R)(W_2 - W_1/t)$$

Answer: (b)  $-n(W_2 - W_1)/5Rt$